ImportError: The pandas.io.data module is moved to a separate package (pandas-datareader)
ImportError: The pandas.io.data module is moved to a separate package (pandas-datareader)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17  | #-*- coding: utf-8 -*- import pandas as pd import pandas.io.data as web import datetime def download_stock_data(file_name, company_code, year1, month1, date1, year2, month2, date2):     start = datetime.datetime(year1, month1, date1)     end = datetime.datetime(year2, month2, date2)     df = web.DataReader("%s.KS" % (company_code), "yahoo", start, end)     df.to_pickle(file_name)     return df download_stock_date('samsung.data', '005930', 2016, 1, 1, 2016, 1)  | cs | 
ImportError: The pandas.io.data module is moved to a separate package (pandas-datareader). After installing the pandas-datareader package (https://github.com/pydata/pandas-datareader), you can change the import ``from pandas.io import data, wb`` to ``from pandas_datareader import data, wb``.
pandas-datareader 패키지를 설치한다. 
1  | $ pip install pandas-datareader  | cs | 
ln[4] 와 같이 임포트한다.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16  | #-*- coding: utf-8 -*- import pandas as pd import pandas_datareader.data as web import datetime def download_stock_data(file_name, company_code, year1, month1, date1, year2, month2, date2):     start = datetime.datetime(year1, month1, date1)     end = datetime.datetime(year2, month2, date2)     df = web.DataReader("%s.KS" % (company_code), "yahoo", start, end)     df.to_pickle(file_name)     return df download_stock_data('samsung.data', '005930', 2016, 10, 1, 2016, 10, 31)  | cs | 
실행결과
Open  | 
      High  | 
      Low  | 
      Close  | 
      Volume  | 
      Adj Close  | 
    |
|---|---|---|---|---|---|---|
Date  | 
      ||||||
2016-10-03  | 
      1598000.0  | 
      1598000.0  | 
      1598000.0  | 
      1598000.0  | 
      0  | 
      1598000.0  | 
    
2016-10-04  | 
      1610000.0  | 
      1624000.0  | 
      1606000.0  | 
      1614000.0  | 
      261000  | 
      1614000.0  | 
    
2016-10-05  | 
      1601000.0  | 
      1626000.0  | 
      1597000.0  | 
      1619000.0  | 
      249400  | 
      1619000.0  | 
    
2016-10-06  | 
      1696000.0  | 
      1700000.0  | 
      1667000.0  | 
      1691000.0  | 
      591100  | 
      1691000.0  | 
    
2016-10-07  | 
      1700000.0  | 
      1716000.0  | 
      1690000.0  | 
      1706000.0  | 
      521000  | 
      1706000.0  | 
    
2016-10-10  | 
      1650000.0  | 
      1689000.0  | 
      1628000.0  | 
      1680000.0  | 
      505800  | 
      1680000.0  | 
    
2016-10-11  | 
      1600000.0  | 
      1625000.0  | 
      1545000.0  | 
      1545000.0  | 
      768500  | 
      1545000.0  | 
    
2016-10-12  | 
      1495000.0  | 
      1545000.0  | 
      1494000.0  | 
      1535000.0  | 
      781700  | 
      1535000.0  | 
    
2016-10-13  | 
      1550000.0  | 
      1581000.0  | 
      1545000.0  | 
      1557000.0  | 
      437200  | 
      1557000.0  | 
    
2016-10-14  | 
      1548000.0  | 
      1588000.0  | 
      1547000.0  | 
      1577000.0  | 
      283100  | 
      1577000.0  | 
    
2016-10-17  | 
      1565000.0  | 
      1602000.0  | 
      1538000.0  | 
      1590000.0  | 
      255700  | 
      1590000.0  | 
    
2016-10-18  | 
      1572000.0  | 
      1595000.0  | 
      1572000.0  | 
      1589000.0  | 
      207600  | 
      1589000.0  | 
    
2016-10-19  | 
      1579000.0  | 
      1643000.0  | 
      1575000.0  | 
      1625000.0  | 
      308800  | 
      1625000.0  | 
    
2016-10-20  | 
      1626000.0  | 
      1651000.0  | 
      1609000.0  | 
      1620000.0  | 
      206600  | 
      1620000.0  | 
    
2016-10-21  | 
      1606000.0  | 
      1613000.0  | 
      1588000.0  | 
      1589000.0  | 
      209500  | 
      1589000.0  | 
    
2016-10-24  | 
      1593000.0  | 
      1608000.0  | 
      1590000.0  | 
      1608000.0  | 
      185700  | 
      1608000.0  | 
    
2016-10-25  | 
      1600000.0  | 
      1604000.0  | 
      1592000.0  | 
      1597000.0  | 
      197300  | 
      1597000.0  | 
    
2016-10-26  | 
      1597000.0  | 
      1599000.0  | 
      1562000.0  | 
      1567000.0  | 
      210600  | 
      1567000.0  | 
    
2016-10-27  | 
      1571000.0  | 
      1617000.0  | 
      1556000.0  | 
      1573000.0  | 
      282300  | 
      1573000.0  | 
    
2016-10-28  | 
      1580000.0  | 
      1614000.0  | 
      1580000.0  | 
      1614000.0  | 
      204200  | 
      1614000.0  | 
    
2016-10-31  | 
      1616000.0  | 
      1639000.0  | 
      1611000.0  | 
      1639000.0  | 
      241300  | 
      1639000.0  |