728x90
Deep MNIST for Experts 튜토리얼 실행시 발생할 수 있는 텐서플로우 코드 에러
ResourceExhaustedError 가 발생하는 경우
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 | step 18500, training accuracy 1 step 18600, training accuracy 1 step 18700, training accuracy 1 step 18800, training accuracy 1 step 18900, training accuracy 1 step 19000, training accuracy 1 step 19100, training accuracy 1 step 19200, training accuracy 1 step 19300, training accuracy 1 step 19400, training accuracy 1 step 19500, training accuracy 1 step 19600, training accuracy 0.98 step 19700, training accuracy 0.98 step 19800, training accuracy 1 step 19900, training accuracy 0.98 print "test accuracy %g" % accuracy.eval(feed_dict={x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}) ------------------------------------------------------------------------- ResourceExhaustedError Traceback (most recent call last) <ipython-input-22-b0ca1bd76417> in <module>() ----> 1 print "test accuracy %g" % accuracy.eval(feed_dict={x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}) /root/anaconda/envs/tensorflow/lib/python2.7/site-packages/tensorflow/python/framework/ops.pyc in eval(self, feed_dict, session) 553 554 """ --> 555 return _eval_using_default_session(self, feed_dict, self.graph, session) 556 557 /root/anaconda/envs/tensorflow/lib/python2.7/site-packages/tensorflow/python/framework/ops.pyc in _eval_using_default_session(tensors, feed_dict, graph, session) 3496 "the tensor's graph is different from the session's " 3497 "graph.") -> 3498 return session.run(tensors, feed_dict) 3499 3500 /root/anaconda/envs/tensorflow/lib/python2.7/site-packages/tensorflow/python/client/session.pyc in run(self, fetches, feed_dict, options, run_metadata) 370 try: 371 result = self._run(None, fetches, feed_dict, options_ptr, --> 372 run_metadata_ptr) 373 if run_metadata: 374 proto_data = tf_session.TF_GetBuffer(run_metadata_ptr) /root/anaconda/envs/tensorflow/lib/python2.7/site-packages/tensorflow/python/client/session.pyc in _run(self, handle, fetches, feed_dict, options, run_metadata) 634 try: 635 results = self._do_run(handle, target_list, unique_fetches, --> 636 feed_dict_string, options, run_metadata) 637 finally: 638 # The movers are no longer used. Delete them. /root/anaconda/envs/tensorflow/lib/python2.7/site-packages/tensorflow/python/client/session.pyc in _do_run(self, handle, target_list, fetch_list, feed_dict, options, run_metadata) 706 if handle is None: 707 return self._do_call(_run_fn, self._session, feed_dict, fetch_list, --> 708 target_list, options, run_metadata) 709 else: 710 return self._do_call(_prun_fn, self._session, handle, feed_dict, /root/anaconda/envs/tensorflow/lib/python2.7/site-packages/tensorflow/python/client/session.pyc in _do_call(self, fn, *args) 726 except KeyError: 727 pass --> 728 raise type(e)(node_def, op, message) 729 730 def _extend_graph(self): ResourceExhaustedError: OOM when allocating tensor with shape[10000,28,28,32] [[Node: Conv2D = Conv2D[T=DT_FLOAT, data_format="NHWC", padding="SAME", strides=[1, 1, 1, 1], use_cudnn_on_gpu=true, _device="/job:localhost/replica:0/task:0/cpu:0"](Reshape, Variable_2/read)]] Caused by op u'Conv2D', defined at: File "/root/anaconda/envs/tensorflow/lib/python2.7/runpy.py", line 174, in _run_module_as_main "__main__", fname, loader, pkg_name) File "/root/anaconda/envs/tensorflow/lib/python2.7/runpy.py", line 72, in _run_code exec code in run_globals File "/root/anaconda/envs/tensorflow/lib/python2.7/site-packages/ipykernel/__main__.py", line 3, in <module> app.launch_new_instance() File "/root/anaconda/envs/tensorflow/lib/python2.7/site-packages/traitlets/config/application.py", line 658, in launch_instance app.start() File "/root/anaconda/envs/tensorflow/lib/python2.7/site-packages/ipykernel/kernelapp.py", line 474, in start ioloop.IOLoop.instance().start() File "/root/anaconda/envs/tensorflow/lib/python2.7/site-packages/zmq/eventloop/ioloop.py", line 177, in start super(ZMQIOLoop, self).start() File "/root/anaconda/envs/tensorflow/lib/python2.7/site-packages/tornado/ioloop.py", line 887, in start handler_func(fd_obj, events) File "/root/anaconda/envs/tensorflow/lib/python2.7/site-packages/tornado/stack_context.py", line 275, in null_wrapper return fn(*args, **kwargs) File "/root/anaconda/envs/tensorflow/lib/python2.7/site-packages/zmq/eventloop/zmqstream.py", line 440, in _handle_events self._handle_recv() File "/root/anaconda/envs/tensorflow/lib/python2.7/site-packages/zmq/eventloop/zmqstream.py", line 472, in _handle_recv self._run_callback(callback, msg) File "/root/anaconda/envs/tensorflow/lib/python2.7/site-packages/zmq/eventloop/zmqstream.py", line 414, in _run_callback callback(*args, **kwargs) File "/root/anaconda/envs/tensorflow/lib/python2.7/site-packages/tornado/stack_context.py", line 275, in null_wrapper return fn(*args, **kwargs) File "/root/anaconda/envs/tensorflow/lib/python2.7/site-packages/ipykernel/kernelbase.py", line 276, in dispatcher return self.dispatch_shell(stream, msg) File "/root/anaconda/envs/tensorflow/lib/python2.7/site-packages/ipykernel/kernelbase.py", line 228, in dispatch_shell handler(stream, idents, msg) File "/root/anaconda/envs/tensorflow/lib/python2.7/site-packages/ipykernel/kernelbase.py", line 390, in execute_request user_expressions, allow_stdin) File "/root/anaconda/envs/tensorflow/lib/python2.7/site-packages/ipykernel/ipkernel.py", line 196, in do_execute res = shell.run_cell(code, store_history=store_history, silent=silent) File "/root/anaconda/envs/tensorflow/lib/python2.7/site-packages/ipykernel/zmqshell.py", line 501, in run_cell return super(ZMQInteractiveShell, self).run_cell(*args, **kwargs) File "/root/anaconda/envs/tensorflow/lib/python2.7/site-packages/IPython/core/interactiveshell.py", line 2717, in run_cell interactivity=interactivity, compiler=compiler, result=result) File "/root/anaconda/envs/tensorflow/lib/python2.7/site-packages/IPython/core/interactiveshell.py", line 2821, in run_ast_nodes if self.run_code(code, result): File "/root/anaconda/envs/tensorflow/lib/python2.7/site-packages/IPython/core/interactiveshell.py", line 2881, in run_code exec(code_obj, self.user_global_ns, self.user_ns) File "<ipython-input-8-2d359ddc58b5>", line 1, in <module> h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1) File "<ipython-input-5-63d0af69b544>", line 3, in conv2d return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME') File "/root/anaconda/envs/tensorflow/lib/python2.7/site-packages/tensorflow/python/ops/gen_nn_ops.py", line 394, in conv2d data_format=data_format, name=name) File "/root/anaconda/envs/tensorflow/lib/python2.7/site-packages/tensorflow/python/ops/op_def_library.py", line 704, in apply_op op_def=op_def) File "/root/anaconda/envs/tensorflow/lib/python2.7/site-packages/tensorflow/python/framework/ops.py", line 2260, in create_op original_op=self._default_original_op, op_def=op_def) File "/root/anaconda/envs/tensorflow/lib/python2.7/site-packages/tensorflow/python/framework/ops.py", line 1230, in __init__ self._traceback = _extract_stack() | cs |
accurary evaluation 하는 동안 out of memory 가 발생했다는 내용이다. 따라서 전체 테스트 데이터셋에 대해서 실행하지 말고, 다음 포스팅에서 언급되듯이 배치 단위로 실행하면 되겠다.
How to read data into TensorFlow batches from example queue?
http://stackoverflow.com/questions/37126108/how-to-read-data-into-tensorflow-batches-from-example-queue
마지막 라인
1 | print "test accuracy %g" % accuracy.eval(feed_dict={x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}) | cs |
다음의 코드로 교체한다.
1 2 3 | for i in xrange(10): testSet = mnist.test.next_batch(50) print("test accuracy %g"%accuracy.eval(feed_dict={ x: testSet[0], y_: testSet[1], keep_prob: 1.0})) | cs |
결과는 다음과 같다.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 | for i in range(1000): batch = mnist.train.next_batch(50) if i%100 == 0: train_accuracy = accuracy.eval(session=sess, feed_dict={x:batch[0], y_: batch[1], keep_prob: 1.0}) print "step %d, training accuracy %g" % (i, train_accuracy) train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5}) step 0, training accuracy 0.12 step 100, training accuracy 0.8 step 200, training accuracy 0.92 step 300, training accuracy 0.86 step 400, training accuracy 1 step 500, training accuracy 0.94 step 600, training accuracy 1 step 700, training accuracy 1 step 800, training accuracy 0.96 step 900, training accuracy 1 for i in xrange(10): testSet = mnist.test.next_batch(50) print("test accuracy %g"%accuracy.eval(feed_dict={ x: testSet[0], y_: testSet[1], keep_prob: 1.0})) test accuracy 0.98 test accuracy 0.96 test accuracy 1 test accuracy 0.98 test accuracy 0.96 test accuracy 0.98 test accuracy 0.9 test accuracy 0.98 test accuracy 0.92 test accuracy 0.98 | cs |
728x90
'프로그래밍 Programming' 카테고리의 다른 글
scikit-learn 을 통한 머신러닝 - 데이터셋 로딩, 학습, 그리고 예측 (0) | 2016.10.31 |
---|---|
텐서보드 사용법 (0) | 2016.10.31 |
Deep MNIST for Experts - 전체 코드 (2) (0) | 2016.10.31 |
Deep MNIST for Experts - 전체 코드 (1) (0) | 2016.10.31 |
텐서플로우 코드 에러 - FailedPreconditionError (0) | 2016.10.30 |